LEDIR: An Unsupervised Algorithm for Learning Directionality of Inference Rules

نویسندگان

  • Rahul Bhagat
  • Patrick Pantel
  • Eduard H. Hovy
چکیده

Semantic inference is a core component of many natural language applications. In response, several researchers have developed algorithms for automatically learning inference rules from textual corpora. However, these rules are often either imprecise or underspecified in directionality. In this paper we propose an algorithm called LEDIR that filters incorrect inference rules and identifies the directionality of correct ones. Based on an extension to Harris’s distributional hypothesis, we use selectional preferences to gather evidence of inference directionality and plausibility. Experiments show empirical evidence that our approach can classify inference rules significantly better than several baselines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Unsupervised Learning of Eye - Hand

Unsupervised learning of eye-hand-coordination is an interesting problem for two very diierent reasons. First, it is an important step in the human cognitive development. Second, when applied to a real-world setup as we do here, it has an application potential. Demonstrating its potential on this concrete task, we present a novel approach to unsupervised learning, the so-called stimulus-respons...

متن کامل

Predicting stock prices on the Tehran Stock Exchange by a new hybridization of Fuzzy Inference System and Fuzzy Imperialist Competitive Algorithm

Investing on the stock exchange, as one of the financial resources, has always been a favorite among many investors. Today, one of the areas, where the prediction is its particular importance issue, is financial area, especially stock exchanges. The main objective of the markets is the future trend prices prediction in order to adopt a suitable strategy for buying or selling. In general, an inv...

متن کامل

DIRT – Discovery of Inference Rules from Text

In this paper, we propose an unsupervised method for discovering inference rules from text, such as “X is author of Y ≈ X wrote Y”, “X solved Y ≈ X found a solution to Y”, and “X caused Y ≈ Y is triggered by X”. Inference rules are extremely important in many fields such as natural language processing, information retrieval, and artificial intelligence in general. Our algorithm is based on an e...

متن کامل

Evaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station

Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007